If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+4.5x=0
a = 0.5; b = 4.5; c = 0;
Δ = b2-4ac
Δ = 4.52-4·0.5·0
Δ = 20.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.5)-\sqrt{20.25}}{2*0.5}=\frac{-4.5-\sqrt{20.25}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.5)+\sqrt{20.25}}{2*0.5}=\frac{-4.5+\sqrt{20.25}}{1} $
| 5x-4(2x-7)=15 | | 6x+2x+60=180 | | 2x^2+3x+82=180 | | 3(1-x)+2x-5=7x-(4x-2)-6 | | Y-10=1/3(x-6 | | 3.5x^2-3x-4.5=0 | | 2x2+0,5=5 | | -5/12-(-9/3)=w | | x2=x+12 | | x^2+9*x+13=x | | 9-x-x=31 | | 3x+6=4+5 | | |7n-10|=54 | | (854x)+x=982.10 | | 18+w=40 | | 20x+25=45 | | (x+10)(− x−8)=0 | | (x+10)(− x−8)=0. | | w=58 | | 9+5x-6x=8 | | x=x/2+12-x/2 | | 4x+x+15=180 | | 4x-3=2×+11 | | (.17x)+x=110 | | -4=w=-7 | | 3x-4=77 | | 3x+x+28=180 | | 50=j/5+45 | | 13x^2-4x-105=0 | | 5p-33=57 | | 9−6r=-5r | | N÷9=13n= |